Paper ID: 2104.09008

Kernel Adversarial Learning for Real-world Image Super-resolution

Hu Wang, Congbo Ma, Jianpeng Zhang, Wei Emma Zhang, Gustavo Carneiro

Current deep image super-resolution (SR) approaches aim to restore high-resolution images from down-sampled images or by assuming degradation from simple Gaussian kernels and additive noises. However, these techniques only assume crude approximations of the real-world image degradation process, which should involve complex kernels and noise patterns that are difficult to model using simple assumptions. In this paper, we propose a more realistic process to synthesise low-resolution images for real-world image SR by introducing a new Kernel Adversarial Learning Super-resolution (KASR) framework. In the proposed framework, degradation kernels and noises are adaptively modelled rather than explicitly specified. Moreover, we also propose a high-frequency selective objective and an iterative supervision process to further boost the model SR reconstruction accuracy. Extensive experiments validate the effectiveness of the proposed framework on real-world datasets.

Submitted: Apr 19, 2021