Paper ID: 2111.03454
Control of a fly-mimicking flyer in complex flow using deep reinforcement learning
Seungpyo Hong, Sejin Kim, Donghyun You
An integrated framework of computational fluid-structural dynamics (CFD-CSD) and deep reinforcement learning (deep-RL) is developed for control of a fly-scale flexible-winged flyer in complex flow. Dynamics of the flyer in complex flow is highly unsteady and nonlinear, which makes modeling the dynamics challenging. Thus, conventional control methodologies, where the dynamics is modeled, are insufficient for regulating such complicated dynamics. Therefore, in the present study, the integrated framework, in which the whole governing equations for fluid and structure are solved, is proposed to generate a control policy for the flyer. For the deep-RL to successfully learn the control policy, accurate and ample data of the dynamics are required. However, satisfying both the quality and quantity of the data on the intricate dynamics is extremely difficult since, in general, more accurate data are more costly. In the present study, two strategies are proposed to deal with the dilemma. To obtain accurate data, the CFD-CSD is adopted for precisely predicting the dynamics. To gain ample data, a novel data reproduction method is devised, where the obtained data are replicated for various situations while conserving the dynamics. With those data, the framework learns the control policy in various flow conditions and the learned policy is shown to have remarkable performance in controlling the flyer in complex flow fields.
Submitted: Nov 4, 2021