Paper ID: 2111.04727
Efficiently Learning Any One Hidden Layer ReLU Network From Queries
Sitan Chen, Adam R Klivans, Raghu Meka
Model extraction attacks have renewed interest in the classic problem of learning neural networks from queries. In this work we give the first polynomial-time algorithm for learning arbitrary one hidden layer neural networks activations provided black-box access to the network. Formally, we show that if $F$ is an arbitrary one hidden layer neural network with ReLU activations, there is an algorithm with query complexity and running time that is polynomial in all parameters that outputs a network $F'$ achieving low square loss relative to $F$ with respect to the Gaussian measure. While a number of works in the security literature have proposed and empirically demonstrated the effectiveness of certain algorithms for this problem, ours is the first with fully polynomial-time guarantees of efficiency even for worst-case networks (in particular our algorithm succeeds in the overparameterized setting).
Submitted: Nov 8, 2021