Paper ID: 2111.04732

Use of 1D-CNN for input data size reduction of LSTM in Hourly Rainfall-Runoff modeling

Kei Ishida, Ali Ercan, Takeyoshi Nagasato, Masato Kiyama, Motoki Amagasaki

An architecture consisting of a serial coupling of the one-dimensional convolutional neural network (1D-CNN) and the long short-term memory (LSTM) network, which is referred as CNNsLSTM, was proposed for hourly-scale rainfall-runoff modeling in this study. In CNNsLTSM, the CNN component receives the hourly meteorological time series data for a long duration, and then the LSTM component receives the extracted features from 1D-CNN and the hourly meteorological time series data for a short-duration. As a case study, CNNsLSTM was implemented for hourly rainfall-runoff modeling at the Ishikari River watershed, Japan. The meteorological dataset, consists of precipitation, air temperature, evapotranspiration, and long- and short-wave radiation, were utilized as input, and the river flow was used as the target data. To evaluate the performance of proposed CNNsLSTM, results of CNNsLSTM were compared with those of 1D-CNN, LSTM only with hourly inputs (LSTMwHour), parallel architecture of 1D-CNN and LSTM (CNNpLSTM), and the LSTM architecture which uses both daily and hourly input data (LSTMwDpH). CNNsLSTM showed clear improvements on the estimation accuracy compared to the three conventional architectures (1D-CNN, LSTMwHour, and CNNpLSTM), and recently proposed LSTMwDpH. In comparison to observed flows, the median of the NSE values for the test period are 0.455-0.469 for 1D-CNN (based on NCHF=8, 16, and 32, the numbers of the channels of the feature map of the first layer of CNN), 0.639-0.656 for CNNpLSTM (based on NCHF=8, 16, and 32), 0.745 for LSTMwHour, 0.831 for LSTMwDpH, and 0.865-0.873 for CNNsLSTM (based on NCHF=8, 16, and 32). Furthermore, the proposed CNNsLSTM reduces the median RMSE of 1D-CNN by 50.2%-51.4%, CNNpLSTM by 37.4%-40.8%, LSTMwHour by 27.3%-29.5%, and LSTMwDpH by 10.6%-13.4%.

Submitted: Nov 7, 2021