Paper ID: 2111.05528
Lightweight machine unlearning in neural network
Kongyang Chen, Yiwen Wang, Yao Huang
In recent years, machine learning neural network has penetrated deeply into people's life. As the price of convenience, people's private information also has the risk of disclosure. The "right to be forgotten" was introduced in a timely manner, stipulating that individuals have the right to withdraw their consent from personal information processing activities based on their consent. To solve this problem, machine unlearning is proposed, which allows the model to erase all memory of private information. Previous studies, including retraining and incremental learning to update models, often take up extra storage space or are difficult to apply to neural networks. Our method only needs to make a small perturbation of the weight of the target model and make it iterate in the direction of the model trained with the remaining data subset until the contribution of the unlearning data to the model is completely eliminated. In this paper, experiments on five datasets prove the effectiveness of our method for machine unlearning, and our method is 15 times faster than retraining.
Submitted: Nov 10, 2021