Paper ID: 2111.06263
Towards Live Video Analytics with On-Drone Deeper-yet-Compatible Compression
Junpeng Guo, Chunyi Peng
In this work, we present DCC(Deeper-yet-Compatible Compression), one enabling technique for real-time drone-sourced edge-assisted video analytics built on top of the existing codec. DCC tackles an important technical problem to compress streamed video from the drone to the edge without scarifying accuracy and timeliness of video analytical tasks performed at the edge. DCC is inspired by the fact that not every bit in streamed video is equally valuable to video analytics, which opens new compression room over the conventional analytics-oblivious video codec technology. We exploit drone-specific context and intermediate hints from object detection to pursue adaptive fidelity needed to retain analytical quality. We have prototyped DCC in one showcase application of vehicle detection and validated its efficiency in representative scenarios. DCC has reduced transmission volume by 9.5-fold over the baseline approach and 19-683% over the state-of-the-art with comparable detection accuracy.
Submitted: Nov 10, 2021