Paper ID: 2111.07248

Background-Aware 3D Point Cloud Segmentationwith Dynamic Point Feature Aggregation

Jiajing Chen, Burak Kakillioglu, Senem Velipasalar

With the proliferation of Lidar sensors and 3D vision cameras, 3D point cloud analysis has attracted significant attention in recent years. After the success of the pioneer work PointNet, deep learning-based methods have been increasingly applied to various tasks, including 3D point cloud segmentation and 3D object classification. In this paper, we propose a novel 3D point cloud learning network, referred to as Dynamic Point Feature Aggregation Network (DPFA-Net), by selectively performing the neighborhood feature aggregation with dynamic pooling and an attention mechanism. DPFA-Net has two variants for semantic segmentation and classification of 3D point clouds. As the core module of the DPFA-Net, we propose a Feature Aggregation layer, in which features of the dynamic neighborhood of each point are aggregated via a self-attention mechanism. In contrast to other segmentation models, which aggregate features from fixed neighborhoods, our approach can aggregate features from different neighbors in different layers providing a more selective and broader view to the query points, and focusing more on the relevant features in a local neighborhood. In addition, to further improve the performance of the proposed semantic segmentation model, we present two novel approaches, namely Two-Stage BF-Net and BF-Regularization to exploit the background-foreground information. Experimental results show that the proposed DPFA-Net achieves the state-of-the-art overall accuracy score for semantic segmentation on the S3DIS dataset, and provides a consistently satisfactory performance across different tasks of semantic segmentation, part segmentation, and 3D object classification. It is also computationally more efficient compared to other methods.

Submitted: Nov 14, 2021