Paper ID: 2111.08196

An Exploratory Study on Perceptual Spaces of the Singing Voice

Brendan O'Connor, Simon Dixon, George Fazekas

Sixty participants provided dissimilarity ratings between various singing techniques. Multidimensional scaling, class averaging and clustering techniques were used to analyse timbral spaces and how they change between different singers, genders and registers. Clustering analysis showed that ground-truth similarity and silhouette scores that were not significantly different between gender or register conditions, while similarity scores were positively correlated with participants' instrumental abilities and task comprehension. Participant feedback showed how a revised study design might mitigate noise in our data, leading to more detailed statistical results. Timbre maps and class distance analysis showed us which singing techniques remained similar to one another across gender and register conditions. This research provides insight into how the timbre space of singing changes under different conditions, highlights the subjectivity of perception between participants, and provides generalised timbre maps for regularisation in machine learning.

Submitted: Nov 16, 2021