Paper ID: 2111.08350

Learning Equilibria in Mean-Field Games: Introducing Mean-Field PSRO

Paul Muller, Mark Rowland, Romuald Elie, Georgios Piliouras, Julien Perolat, Mathieu Lauriere, Raphael Marinier, Olivier Pietquin, Karl Tuyls

Recent advances in multiagent learning have seen the introduction ofa family of algorithms that revolve around the population-based trainingmethod PSRO, showing convergence to Nash, correlated and coarse corre-lated equilibria. Notably, when the number of agents increases, learningbest-responses becomes exponentially more difficult, and as such ham-pers PSRO training methods. The paradigm of mean-field games pro-vides an asymptotic solution to this problem when the considered gamesare anonymous-symmetric. Unfortunately, the mean-field approximationintroduces non-linearities which prevent a straightforward adaptation ofPSRO. Building upon optimization and adversarial regret minimization,this paper sidesteps this issue and introduces mean-field PSRO, an adap-tation of PSRO which learns Nash, coarse correlated and correlated equi-libria in mean-field games. The key is to replace the exact distributioncomputation step by newly-defined mean-field no-adversarial-regret learn-ers, or by black-box optimization. We compare the asymptotic complexityof the approach to standard PSRO, greatly improve empirical bandit con-vergence speed by compressing temporal mixture weights, and ensure itis theoretically robust to payoff noise. Finally, we illustrate the speed andaccuracy of mean-field PSRO on several mean-field games, demonstratingconvergence to strong and weak equilibria.

Submitted: Nov 16, 2021