Paper ID: 2111.08457
A Novel TSK Fuzzy System Incorporating Multi-view Collaborative Transfer Learning for Personalized Epileptic EEG Detection
Andong Li, Zhaohong Deng, Qiongdan Lou, Kup-Sze Choi, Hongbin Shen, Shitong Wang
In clinical practice, electroencephalography (EEG) plays an important role in the diagnosis of epilepsy. EEG-based computer-aided diagnosis of epilepsy can greatly improve the ac-curacy of epilepsy detection while reducing the workload of physicians. However, there are many challenges in practical applications for personalized epileptic EEG detection (i.e., training of detection model for a specific person), including the difficulty in extracting effective features from one single view, the undesirable but common scenario of lacking sufficient training data in practice, and the no guarantee of identically distributed training and test data. To solve these problems, we propose a TSK fuzzy system-based epilepsy detection algorithm that integrates multi-view collaborative transfer learning. To address the challenge due to the limitation of single-view features, multi-view learning ensures the diversity of features by extracting them from different views. The lack of training data for building a personalized detection model is tackled by leveraging the knowledge from the source domain (reference scene) to enhance the performance of the target domain (current scene of interest), where mismatch of data distributions between the two domains is resolved with adaption technique based on maximum mean discrepancy. Notably, the transfer learning and multi-view feature extraction are performed at the same time. Furthermore, the fuzzy rules of the TSK fuzzy system equip the model with strong fuzzy logic inference capability. Hence, the proposed method has the potential to detect epileptic EEG signals effectively, which is demonstrated with the positive results from a large number of experiments on the CHB-MIT dataset.
Submitted: Nov 11, 2021