Paper ID: 2111.08492

Real-time 3D human action recognition based on Hyperpoint sequence

Xing Li, Qian Huang, Zhijian Wang, Zhenjie Hou, Tianjin Yang, Zhuang Miao

Real-time 3D human action recognition has broad industrial applications, such as surveillance, human-computer interaction, and healthcare monitoring. By relying on complex spatio-temporal local encoding, most existing point cloud sequence networks capture spatio-temporal local structures to recognize 3D human actions. To simplify the point cloud sequence modeling task, we propose a lightweight and effective point cloud sequence network referred to as SequentialPointNet for real-time 3D action recognition. Instead of capturing spatio-temporal local structures, SequentialPointNet encodes the temporal evolution of static appearances to recognize human actions. Firstly, we define a novel type of point data, Hyperpoint, to better describe the temporally changing human appearances. A theoretical foundation is provided to clarify the information equivalence property for converting point cloud sequences into Hyperpoint sequences. Secondly, the point cloud sequence modeling task is decomposed into a Hyperpoint embedding task and a Hyperpoint sequence modeling task. Specifically, for Hyperpoint embedding, the static point cloud technology is employed to convert point cloud sequences into Hyperpoint sequences, which introduces inherent frame-level parallelism; for Hyperpoint sequence modeling, a Hyperpoint-Mixer module is designed as the basic building block to learning the spatio-temporal features of human actions. Extensive experiments on three widely-used 3D action recognition datasets demonstrate that the proposed SequentialPointNet achieves competitive classification performance with up to 10X faster than existing approaches.

Submitted: Nov 16, 2021