Paper ID: 2111.09027
Discriminative Dictionary Learning based on Statistical Methods
G. Madhuri, Atul Negi
Sparse Representation (SR) of signals or data has a well founded theory with rigorous mathematical error bounds and proofs. SR of a signal is given by superposition of very few columns of a matrix called Dictionary, implicitly reducing dimensionality. Training dictionaries such that they represent each class of signals with minimal loss is called Dictionary Learning (DL). Dictionary learning methods like Method of Optimal Directions (MOD) and K-SVD have been successfully used in reconstruction based applications in image processing like image "denoising", "inpainting" and others. Other dictionary learning algorithms such as Discriminative K-SVD and Label Consistent K-SVD are supervised learning methods based on K-SVD. In our experience, one of the drawbacks of current methods is that the classification performance is not impressive on datasets like Telugu OCR datasets, with large number of classes and high dimensionality. There is scope for improvement in this direction and many researchers have used statistical methods to design dictionaries for classification. This chapter presents a review of statistical techniques and their application to learning discriminative dictionaries. The objective of the methods described here is to improve classification using sparse representation. In this chapter a hybrid approach is described, where sparse coefficients of input data are generated. We use a simple three layer Multi Layer Perceptron with back-propagation training as a classifier with those sparse codes as input. The results are quite comparable with other computation intensive methods. Keywords: Statistical modeling, Dictionary Learning, Discriminative Dictionary, Sparse representation, Gaussian prior, Cauchy prior, Entropy, Hidden Markov model, Hybrid Dictionary Learning
Submitted: Nov 17, 2021