Paper ID: 2111.10175
Randomized Algorithms for Monotone Submodular Function Maximization on the Integer Lattice
Alberto Schiabel, Vyacheslav Kungurtsev, Jakub Marecek
Optimization problems with set submodular objective functions have many real-world applications. In discrete scenarios, where the same item can be selected more than once, the domain is generalized from a 2-element set to a bounded integer lattice. In this work, we consider the problem of maximizing a monotone submodular function on the bounded integer lattice subject to a cardinality constraint. In particular, we focus on maximizing DR-submodular functions, i.e., functions defined on the integer lattice that exhibit the diminishing returns property. Given any epsilon > 0, we present a randomized algorithm with probabilistic guarantees of O(1 - 1/e - epsilon) approximation, using a framework inspired by a Stochastic Greedy algorithm developed for set submodular functions by Mirzasoleiman et al. We then show that, on synthetic DR-submodular functions, applying our proposed algorithm on the integer lattice is faster than the alternatives, including reducing a target problem to the set domain and then applying the fastest known set submodular maximization algorithm.
Submitted: Nov 19, 2021