Paper ID: 2111.10492
Feature selection or extraction decision process for clustering using PCA and FRSD
Jean-Sebastien Dessureault, Daniel Massicotte
This paper concerns the critical decision process of extracting or selecting the features before applying a clustering algorithm. It is not obvious to evaluate the importance of the features since the most popular methods to do it are usually made for a supervised learning technique process. A clustering algorithm is an unsupervised method. It means that there is no known output label to match the input data. This paper proposes a new method to choose the best dimensionality reduction method (selection or extraction) according to the data scientist's parameters, aiming to apply a clustering process at the end. It uses Feature Ranking Process Based on Silhouette Decomposition (FRSD) algorithm, a Principal Component Analysis (PCA) algorithm, and a K-Means algorithm along with its metric, the Silhouette Index (SI). This paper presents 5 use cases based on a smart city dataset. This research also aims to discuss the impacts, the advantages, and the disadvantages of each choice that can be made in this unsupervised learning process.
Submitted: Nov 20, 2021