Paper ID: 2111.10991

Backdoor Attack through Frequency Domain

Tong Wang, Yuan Yao, Feng Xu, Shengwei An, Hanghang Tong, Ting Wang

Backdoor attacks have been shown to be a serious threat against deep learning systems such as biometric authentication and autonomous driving. An effective backdoor attack could enforce the model misbehave under certain predefined conditions, i.e., triggers, but behave normally otherwise. However, the triggers of existing attacks are directly injected in the pixel space, which tend to be detectable by existing defenses and visually identifiable at both training and inference stages. In this paper, we propose a new backdoor attack FTROJAN through trojaning the frequency domain. The key intuition is that triggering perturbations in the frequency domain correspond to small pixel-wise perturbations dispersed across the entire image, breaking the underlying assumptions of existing defenses and making the poisoning images visually indistinguishable from clean ones. We evaluate FTROJAN in several datasets and tasks showing that it achieves a high attack success rate without significantly degrading the prediction accuracy on benign inputs. Moreover, the poisoning images are nearly invisible and retain high perceptual quality. We also evaluate FTROJAN against state-of-the-art defenses as well as several adaptive defenses that are designed on the frequency domain. The results show that FTROJAN can robustly elude or significantly degenerate the performance of these defenses.

Submitted: Nov 22, 2021