Paper ID: 2111.11103

Improving Semantic Image Segmentation via Label Fusion in Semantically Textured Meshes

Florian Fervers, Timo Breuer, Gregor Stachowiak, Sebastian Bullinger, Christoph Bodensteiner, Michael Arens

Models for semantic segmentation require a large amount of hand-labeled training data which is costly and time-consuming to produce. For this purpose, we present a label fusion framework that is capable of improving semantic pixel labels of video sequences in an unsupervised manner. We make use of a 3D mesh representation of the environment and fuse the predictions of different frames into a consistent representation using semantic mesh textures. Rendering the semantic mesh using the original intrinsic and extrinsic camera parameters yields a set of improved semantic segmentation images. Due to our optimized CUDA implementation, we are able to exploit the entire $c$-dimensional probability distribution of annotations over $c$ classes in an uncertainty-aware manner. We evaluate our method on the Scannet dataset where we improve annotations produced by the state-of-the-art segmentation network ESANet from $52.05 \%$ to $58.25 \%$ pixel accuracy. We publish the source code of our framework online to foster future research in this area (\url{https://github.com/fferflo/semantic-meshes}). To the best of our knowledge, this is the first publicly available label fusion framework for semantic image segmentation based on meshes with semantic textures.

Submitted: Nov 22, 2021