Paper ID: 2111.11439

Image prediction of disease progression by style-based manifold extrapolation

Tianyu Han, Jakob Nikolas Kather, Federico Pedersoli, Markus Zimmermann, Sebastian Keil, Maximilian Schulze-Hagen, Marc Terwoelbeck, Peter Isfort, Christoph Haarburger, Fabian Kiessling, Volkmar Schulz, Christiane Kuhl, Sven Nebelung, Daniel Truhn

Disease-modifying management aims to prevent deterioration and progression of the disease, not just relieve symptoms. Unfortunately, the development of necessary therapies is often hampered by the failure to recognize the presymptomatic disease and limited understanding of disease development. We present a generic solution for this problem by a methodology that allows the prediction of progression risk and morphology in individuals using a latent extrapolation optimization approach. To this end, we combined a regularized generative adversarial network (GAN) and a latent nearest neighbor algorithm for joint optimization to generate plausible images of future time points. We evaluated our method on osteoarthritis (OA) data from a multi-center longitudinal study (the Osteoarthritis Initiative, OAI). With presymptomatic baseline data, our model is generative and significantly outperforms the end-to-end learning model in discriminating the progressive cohort. Two experiments were performed with seven experienced radiologists. When no synthetic follow-up radiographs were provided, our model performed better than all seven radiologists. In cases where the synthetic follow-ups generated by our model were available, the specificity and sensitivity of all readers in discriminating progressors increased from $72.3\%$ to $88.6\%$ and from $42.1\%$ to $51.6\%$, respectively. Our results open up a new possibility of using model-based morphology and risk prediction to make predictions about future disease occurrence, as demonstrated in the example of OA.

Submitted: Nov 22, 2021