Paper ID: 2111.11783
GenReg: Deep Generative Method for Fast Point Cloud Registration
Xiaoshui Huang, Zongyi Xu, Guofeng Mei, Sheng Li, Jian Zhang, Yifan Zuo, Yucheng Wang
Accurate and efficient point cloud registration is a challenge because the noise and a large number of points impact the correspondence search. This challenge is still a remaining research problem since most of the existing methods rely on correspondence search. To solve this challenge, we propose a new data-driven registration algorithm by investigating deep generative neural networks to point cloud registration. Given two point clouds, the motivation is to generate the aligned point clouds directly, which is very useful in many applications like 3D matching and search. We design an end-to-end generative neural network for aligned point clouds generation to achieve this motivation, containing three novel components. Firstly, a point multi-perception layer (MLP) mixer (PointMixer) network is proposed to efficiently maintain both the global and local structure information at multiple levels from the self point clouds. Secondly, a feature interaction module is proposed to fuse information from cross point clouds. Thirdly, a parallel and differential sample consensus method is proposed to calculate the transformation matrix of the input point clouds based on the generated registration results. The proposed generative neural network is trained in a GAN framework by maintaining the data distribution and structure similarity. The experiments on both ModelNet40 and 7Scene datasets demonstrate that the proposed algorithm achieves state-of-the-art accuracy and efficiency. Notably, our method reduces $2\times$ in registration error (CD) and $12\times$ running time compared to the state-of-the-art correspondence-based algorithm.
Submitted: Nov 23, 2021