Paper ID: 2111.12929

Unbiased Pairwise Learning to Rank in Recommender Systems

Yi Ren, Hongyan Tang, Siwen Zhu

Nowadays, recommender systems already impact almost every facet of peoples lives. To provide personalized high quality recommendation results, conventional systems usually train pointwise rankers to predict the absolute value of objectives and leverage a distinct shallow tower to estimate and alleviate the impact of position bias. However, with such a training paradigm, the optimization target differs a lot from the ranking metrics valuing the relative order of top ranked items rather than the prediction precision of each item. Moreover, as the existing system tends to recommend more relevant items at higher positions, it is difficult for the shallow tower based methods to precisely attribute the user feedback to the impact of position or relevance. Therefore, there exists an exciting opportunity for us to get enhanced performance if we manage to solve the aforementioned issues. Unbiased learning to rank algorithms, which are verified to model the relative relevance accurately based on noisy feedback, are appealing candidates and have already been applied in many applications with single categorical labels, such as user click signals. Nevertheless, the existing unbiased LTR methods cannot properly handle multiple feedback incorporating both categorical and continuous labels. Accordingly, we design a novel unbiased LTR algorithm to tackle the challenges, which innovatively models position bias in the pairwise fashion and introduces the pairwise trust bias to separate the position bias, trust bias, and user relevance explicitly. Experiment results on public benchmark datasets and internal live traffic show the superior results of the proposed method for both categorical and continuous labels.

Submitted: Nov 25, 2021