Paper ID: 2111.14122
Cross-Task Consistency Learning Framework for Multi-Task Learning
Akihiro Nakano, Shi Chen, Kazuyuki Demachi
Multi-task learning (MTL) is an active field in deep learning in which we train a model to jointly learn multiple tasks by exploiting relationships between the tasks. It has been shown that MTL helps the model share the learned features between tasks and enhance predictions compared to when learning each task independently. We propose a new learning framework for 2-task MTL problem that uses the predictions of one task as inputs to another network to predict the other task. We define two new loss terms inspired by cycle-consistency loss and contrastive learning, alignment loss and cross-task consistency loss. Both losses are designed to enforce the model to align the predictions of multiple tasks so that the model predicts consistently. We theoretically prove that both losses help the model learn more efficiently and that cross-task consistency loss is better in terms of alignment with the straight-forward predictions. Experimental results also show that our proposed model achieves significant performance on the benchmark Cityscapes and NYU dataset.
Submitted: Nov 28, 2021