Paper ID: 2112.00131
CovidAlert -- A Wristwatch-based System to Alert Users from Face Touching
Mrinmoy Roy, Venkata Devesh Reddy Seethi, Rami Lake, Pratool Bharti
Worldwide 2019 million people have been infected and 4.5 million have lost their lives in the ongoing Covid-19 pandemic. Until vaccines became widely available, precautions and safety measures like wearing masks, physical distancing, avoiding face touching were some of the primary means to curb the spread of virus. Face touching is a compulsive human begavior that can not be prevented without making a continuous consious effort, even then it is inevitable. To address this problem, we have designed a smartwatch-based solution, CovidAlert, that leverages Random Forest algorithm trained on accelerometer and gyroscope data from the smartwatch to detects hand transition to face and sends a quick haptic alert to the users. CovidALert is highly energy efficient as it employs STA/LTA algorithm as a gatekeeper to curtail the usage of Random Forest model on the watch when user is inactive. The overall accuracy of our system is 88.4% with low false negatives and false positives. We also demonstrated the system viability by implementing it on a commercial Fossil Gen 5 smartwatch.
Submitted: Nov 30, 2021