Paper ID: 2112.01565
A Generic Graph Sparsification Framework using Deep Reinforcement Learning
Ryan Wickman, Xiaofei Zhang, Weizi Li
The interconnectedness and interdependence of modern graphs are growing ever more complex, causing enormous resources for processing, storage, communication, and decision-making of these graphs. In this work, we focus on the task graph sparsification: an edge-reduced graph of a similar structure to the original graph is produced while various user-defined graph metrics are largely preserved. Existing graph sparsification methods are mostly sampling-based, which introduce high computation complexity in general and lack of flexibility for a different reduction objective. We present SparRL, the first generic and effective graph sparsification framework enabled by deep reinforcement learning. SparRL can easily adapt to different reduction goals and promise graph-size-independent complexity. Extensive experiments show that SparRL outperforms all prevailing sparsification methods in producing high-quality sparsified graphs concerning a variety of objectives.
Submitted: Dec 2, 2021