Paper ID: 2112.01708
Emergency-braking Distance Prediction using Deep Learning
Ruisi Zhang, Ashkan Pourkand
Predicting emergency-braking distance is important for the collision avoidance related features, which are the most essential and popular safety features for vehicles. In this study, we first gathered a large data set including a three-dimensional acceleration data and the corresponding emergency-braking distance. Using this data set, we propose a deep-learning model to predict emergency-braking distance, which only requires 0.25 seconds three-dimensional vehicle acceleration data before the break as input. We consider two road surfaces, our deep learning approach is robust to both road surfaces and have accuracy within 3 feet.
Submitted: Dec 3, 2021