Paper ID: 2112.02767
A General Framework for Debiasing in CTR Prediction
Wenjie Chu, Shen Li, Chao Chen, Longfei Xu, Hengbin Cui, Kaikui Liu
Most of the existing methods for debaising in click-through rate (CTR) prediction depend on an oversimplified assumption, i.e., the click probability is the product of observation probability and relevance probability. However, since there is a complicated interplay between these two probabilities, these methods cannot be applied to other scenarios, e.g. query auto completion (QAC) and route recommendation. We propose a general debiasing framework without simplifying the relationships between variables, which can handle all scenarios in CTR prediction. Simulation experiments show that: under the simplest scenario, our method maintains a similar AUC with the state-of-the-art methods; in other scenarios, our method achieves considerable improvements compared with existing methods. Meanwhile, in online experiments, the framework also gains significant improvements consistently.
Submitted: Dec 6, 2021