Paper ID: 2112.07673
Machine learning a manifold
Sean Craven, Djuna Croon, Daniel Cutting, Rachel Houtz
We propose a simple method to identify a continuous Lie algebra symmetry in a dataset through regression by an artificial neural network. Our proposal takes advantage of the $ \mathcal{O}(\epsilon^2)$ scaling of the output variable under infinitesimal symmetry transformations on the input variables. As symmetry transformations are generated post-training, the methodology does not rely on sampling of the full representation space or binning of the dataset, and the possibility of false identification is minimised. We demonstrate our method in the SU(3)-symmetric (non-) linear $\Sigma$ model.
Submitted: Dec 14, 2021