Paper ID: 2112.10390
Evaluation and Comparison of Deep Learning Methods for Pavement Crack Identification with Visual Images
Kai-Liang Lu
Compared with contact detection techniques, pavement crack identification with visual images via deep learning algorithms has the advantages of not being limited by the material of object to be detected, fast speed and low cost. The fundamental frameworks and typical model architectures of transfer learning (TL), encoder-decoder (ED), generative adversarial networks (GAN), and their common modules were first reviewed, and then the evolution of convolutional neural network (CNN) backbone models and GAN models were summarized. The crack classification, segmentation performance, and effect were tested on the SDNET2018 and CFD public data sets. In the aspect of patch sample classification, the fine-tuned TL models can be equivalent to or even slightly better than the ED models in accuracy, and the predicting time is faster; In the aspect of accurate crack location, both ED and GAN algorithms can achieve pixel-level segmentation and is expected to be detected in real time on low computing power platform. Furthermore, a weakly supervised learning framework of combined TL-SSGAN and its performance enhancement measures are proposed, which can maintain comparable crack identification performance with that of the supervised learning, while greatly reducing the number of labeled samples required.
Submitted: Dec 20, 2021