Paper ID: 2112.11210

Discrete fully probabilistic design: towards a control pipeline for the synthesis of policies from examples

Enrico Ferrentino, Pasquale Chiacchio, Giovanni Russo

We present the principled design of a control pipeline for the synthesis of policies from examples data. The pipeline, based on a discretized design which we term as discrete fully probabilistic design, expounds an algorithm recently introduced in Gagliardi and Russo (2021) to synthesize policies from examples for constrained, stochastic and nonlinear systems. Contrary to other approaches, the pipeline we present: (i) does not need the constraints to be fulfilled in the possibly noisy example data; (ii) enables control synthesis even when the data are collected from an example system that is different from the one under control. The design is benchmarked numerically on an example that involves controlling an inverted pendulum with actuation constraints starting from data collected from a physically different pendulum that does not satisfy the system-specific actuation constraints. We also make our fully documented code openly available.

Submitted: Dec 21, 2021