Paper ID: 2112.11461
Deep Reinforcement Learning for Optimal Power Flow with Renewables Using Graph Information
Jinhao Li, Ruichang Zhang, Hao Wang, Zhi Liu, Hongyang Lai, Yanru Zhang
Renewable energy resources (RERs) have been increasingly integrated into large-scale distributed power systems. Considering uncertainties and voltage fluctuation issues introduced by RERs, in this paper, we propose a deep reinforcement learning (DRL)-based strategy leveraging spatial-temporal (ST) graphical information of power systems, to dynamically search for the optimal operation, i.e., optimal power flow (OPF), of power systems with a high uptake of RERs. Specifically, we formulate the OPF problem as a multi-objective optimization problem considering generation cost, voltage fluctuation, and transmission loss, and employ deep deterministic policy gradient (DDPG) to learn an optimal allocation strategy for OPF. Moreover, given that the nodes in power systems are self-correlated and interrelated in temporal and spatial views, we develop a multi-grained attention-based spatial-temporal graph convolution network (MG-ASTGCN) for extracting ST graphical correlations and features, aiming to provide prior knowledge of power systems for its sequential DDPG algorithm to more effectively solve OPF. We validate our algorithm on modified IEEE 33, 69, and 118-bus radial distribution systems and demonstrate that our algorithm outperforms other benchmark algorithms. Our experimental results also reveal that our MG-ASTGCN can significantly accelerate DDPG's training process and performance in solving OPF.
Submitted: Dec 22, 2021