Paper ID: 2112.11480
On the Compression of Natural Language Models
Saeed Damadi
Deep neural networks are effective feature extractors but they are prohibitively large for deployment scenarios. Due to the huge number of parameters, interpretability of parameters in different layers is not straight-forward. This is why neural networks are sometimes considered black boxes. Although simpler models are easier to explain, finding them is not easy. If found, a sparse network that can fit to a data from scratch would help to interpret parameters of a neural network. To this end, lottery ticket hypothesis states that typical dense neural networks contain a small sparse sub-network that can be trained to a reach similar test accuracy in an equal number of steps. The goal of this work is to assess whether such a trainable subnetwork exists for natural language models (NLM)s. To achieve this goal we will review state-of-the-art compression techniques such as quantization, knowledge distillation, and pruning.
Submitted: Dec 13, 2021