Paper ID: 2112.12272
Human Activity Recognition on wrist-worn accelerometers using self-supervised neural networks
Niranjan Sridhar, Lance Myers
Measures of Activity of Daily Living (ADL) are an important indicator of overall health but difficult to measure in-clinic. Automated and accurate human activity recognition (HAR) using wrist-worn accelerometers enables practical and cost efficient remote monitoring of ADL. Key obstacles in developing high quality HAR is the lack of large labeled datasets and the performance loss when applying models trained on small curated datasets to the continuous stream of heterogeneous data in real-life. In this work we design a self-supervised learning paradigm to create a robust representation of accelerometer data that can generalize across devices and subjects. We demonstrate that this representation can separate activities of daily living and achieve strong HAR accuracy (on multiple benchmark datasets) using very few labels. We also propose a segmentation algorithm which can identify segments of salient activity and boost HAR accuracy on continuous real-life data.
Submitted: Dec 22, 2021