Paper ID: 2112.12909

Optimal Variable Clustering for High-Dimensional Matrix Valued Data

Inbeom Lee, Siyi Deng, Yang Ning

Matrix valued data has become increasingly prevalent in many applications. Most of the existing clustering methods for this type of data are tailored to the mean model and do not account for the dependence structure of the features, which can be very informative, especially in high-dimensional settings or when mean information is not available. To extract the information from the dependence structure for clustering, we propose a new latent variable model for the features arranged in matrix form, with some unknown membership matrices representing the clusters for the rows and columns. Under this model, we further propose a class of hierarchical clustering algorithms using the difference of a weighted covariance matrix as the dissimilarity measure. Theoretically, we show that under mild conditions, our algorithm attains clustering consistency in the high-dimensional setting. While this consistency result holds for our algorithm with a broad class of weighted covariance matrices, the conditions for this result depend on the choice of the weight. To investigate how the weight affects the theoretical performance of our algorithm, we establish the minimax lower bound for clustering under our latent variable model in terms of some cluster separation metric. Given these results, we identify the optimal weight in the sense that using this weight guarantees our algorithm to be minimax rate-optimal. The practical implementation of our algorithm with the optimal weight is also discussed. Simulation studies show that our algorithm performs better than existing methods in terms of the adjusted Rand index (ARI). The method is applied to a genomic dataset and yields meaningful interpretations.

Submitted: Dec 24, 2021