Paper ID: 2112.13646
Personalized Lane Change Decision Algorithm Using Deep Reinforcement Learning Approach
Daofei Li, Ao Liu
To develop driving automation technologies for human, a human-centered methodology should be adopted for ensured safety and satisfactory user experience. Automated lane change decision in dense highway traffic is challenging, especially when considering the personalized preferences of different drivers. To fulfill human driver centered decision algorithm development, we carry out driver-in-the-loop experiments on a 6-Degree-of-Freedom driving simulator. Based on the analysis of the lane change data by drivers of three specific styles,personalization indicators are selected to describe the driver preferences in lane change decision. Then a deep reinforcement learning (RL) approach is applied to design human-like agents for automated lane change decision, with refined reward and loss functions to capture the driver preferences.The trained RL agents and benchmark agents are tested in a two-lane highway driving scenario, and by comparing the agents with the specific drivers at the same initial states of lane change, the statistics show that the proposed algorithm can guarantee higher consistency of lane change decision preferences. The driver personalization indicators and the proposed RL-based lane change decision algorithm are promising to contribute in automated lane change system developing.
Submitted: Dec 17, 2021