Paper ID: 2112.13964

Online Allocation Problem with Two-sided Resource Constraints

Qixin Zhang, Wenbing Ye, Zaiyi Chen, Haoyuan Hu, Enhong Chen, Yang Yu

In this paper, we investigate the online allocation problem of maximizing the overall revenue subject to both lower and upper bound constraints. Compared to the extensively studied online problems with only resource upper bounds, the two-sided constraints affect the prospects of resource consumption more severely. As a result, only limited violations of constraints or pessimistic competitive bounds could be guaranteed. To tackle the challenge, we define a measure of feasibility $\xi^*$ to evaluate the hardness of this problem, and estimate this measurement by an optimization routine with theoretical guarantees. We propose an online algorithm adopting a constructive framework, where we initialize a threshold price vector using the estimation, then dynamically update the price vector and use it for decision-making at each step. It can be shown that the proposed algorithm is $\big(1-O(\frac{\varepsilon}{\xi^*-\varepsilon})\big)$ or $\big(1-O(\frac{\varepsilon}{\xi^*-\sqrt{\varepsilon}})\big)$ competitive with high probability for $\xi^*$ known or unknown respectively. To the best of our knowledge, this is the first result establishing a nearly optimal competitive algorithm for solving two-sided constrained online allocation problems with a high probability of feasibility.

Submitted: Dec 28, 2021