Paper ID: 2112.15362

Modeling Mask Uncertainty in Hyperspectral Image Reconstruction

Jiamian Wang, Yulun Zhang, Xin Yuan, Ziyi Meng, Zhiqiang Tao

Recently, hyperspectral imaging (HSI) has attracted increasing research attention, especially for the ones based on a coded aperture snapshot spectral imaging (CASSI) system. Existing deep HSI reconstruction models are generally trained on paired data to retrieve original signals upon 2D compressed measurements given by a particular optical hardware mask in CASSI, during which the mask largely impacts the reconstruction performance and could work as a "model hyperparameter" governing on data augmentations. This mask-specific training style will lead to a hardware miscalibration issue, which sets up barriers to deploying deep HSI models among different hardware and noisy environments. To address this challenge, we introduce mask uncertainty for HSI with a complete variational Bayesian learning treatment and explicitly model it through a mask decomposition inspired by real hardware. Specifically, we propose a novel Graph-based Self-Tuning (GST) network to reason uncertainties adapting to varying spatial structures of masks among different hardware. Moreover, we develop a bilevel optimization framework to balance HSI reconstruction and uncertainty estimation, accounting for the hyperparameter property of masks. Extensive experimental results and model discussions validate the effectiveness (over 33/30 dB) of the proposed GST method under two miscalibration scenarios and demonstrate a highly competitive performance compared with the state-of-the-art well-calibrated methods. Our code and pre-trained model are available at https://github.com/Jiamian-Wang/mask_uncertainty_spectral_SCI

Submitted: Dec 31, 2021