Paper ID: 2201.00011
An Efficient Federated Distillation Learning System for Multi-task Time Series Classification
Huanlai Xing, Zhiwen Xiao, Rong Qu, Zonghai Zhu, Bowen Zhao
This paper proposes an efficient federated distillation learning system (EFDLS) for multi-task time series classification (TSC). EFDLS consists of a central server and multiple mobile users, where different users may run different TSC tasks. EFDLS has two novel components, namely a feature-based student-teacher (FBST) framework and a distance-based weights matching (DBWM) scheme. Within each user, the FBST framework transfers knowledge from its teacher's hidden layers to its student's hidden layers via knowledge distillation, with the teacher and student having identical network structure. For each connected user, its student model's hidden layers' weights are uploaded to the EFDLS server periodically. The DBWM scheme is deployed on the server, with the least square distance used to measure the similarity between the weights of two given models. This scheme finds a partner for each connected user such that the user's and its partner's weights are the closest among all the weights uploaded. The server exchanges and sends back the user's and its partner's weights to these two users which then load the received weights to their teachers' hidden layers. Experimental results show that the proposed EFDLS achieves excellent performance on a set of selected UCR2018 datasets regarding top-1 accuracy.
Submitted: Dec 30, 2021