Paper ID: 2201.00548

Hybrid intelligence for dynamic job-shop scheduling with deep reinforcement learning and attention mechanism

Yunhui Zeng, Zijun Liao, Yuanzhi Dai, Rong Wang, Xiu Li, Bo Yuan

The dynamic job-shop scheduling problem (DJSP) is a class of scheduling tasks that specifically consider the inherent uncertainties such as changing order requirements and possible machine breakdown in realistic smart manufacturing settings. Since traditional methods cannot dynamically generate effective scheduling strategies in face of the disturbance of environments, we formulate the DJSP as a Markov decision process (MDP) to be tackled by reinforcement learning (RL). For this purpose, we propose a flexible hybrid framework that takes disjunctive graphs as states and a set of general dispatching rules as the action space with minimum prior domain knowledge. The attention mechanism is used as the graph representation learning (GRL) module for the feature extraction of states, and the double dueling deep Q-network with prioritized replay and noisy networks (D3QPN) is employed to map each state to the most appropriate dispatching rule. Furthermore, we present Gymjsp, a public benchmark based on the well-known OR-Library, to provide a standardized off-the-shelf facility for RL and DJSP research communities. Comprehensive experiments on various DJSP instances confirm that our proposed framework is superior to baseline algorithms with smaller makespan across all instances and provide empirical justification for the validity of the various components in the hybrid framework.

Submitted: Jan 3, 2022