Paper ID: 2201.02838

Smart Power Supply for UAV Agility Enhancement Using Deep Neural Networks

Yanze Liu, Xuhui Chen, Yanhai Du, Rui Liu

Recently unmanned aerial vehicles (UAV) have been widely deployed in various real-world scenarios such as disaster rescue and package delivery. Many of these working environments are unstructured with uncertain and dynamic obstacles. UAV collision frequently happens. An UAV with high agility is highly desired to adjust its motions to adapt to these environmental dynamics. However, UAV agility is restricted by its battery power output; particularly, an UAV's power system cannot be aware of its actual power need in motion planning while the need is dynamically changing as the environment and UAV condition vary. It is difficult to accurately and timely align the power supply with power needs in motion plannings. This mismatching will lead to an insufficient power supply to an UAV and cause delayed motion adjustments, largely increasing the risk of collisions with obstacles and therefore undermine UAV agility. To improve UAV agility, a novel intelligent power solution, Agility-Enhanced Power Supply (AEPS), was developed to proactively prepare appropriate amount powers at the right timing to support motion planning with enhanced agility. This method builds a bridge between the physical power system and UAV planning. With agility-enhanced motion planning, the safety of UAV in complex working environment will be enhanced. To evaluate AEPS effectiveness, missions of "patrol missions for community security" with unexpected obstacles were adopted; the power supply is realized by hybrid integration of fuel cell, battery, and capacitor. The effectiveness of AEPS in improving UAV agility was validated by the successful and timely power supply, improved task success rate and system safety, and reduced mission duration.

Submitted: Jan 8, 2022