Paper ID: 2201.03172

Communication-Efficient Federated Learning with Accelerated Client Gradient

Geeho Kim, Jinkyu Kim, Bohyung Han

Federated learning often suffers from slow and unstable convergence due to the heterogeneous characteristics of participating client datasets. Such a tendency is aggravated when the client participation ratio is low since the information collected from the clients has large variations. To address this challenge, we propose a simple but effective federated learning framework, which improves the consistency across clients and facilitates the convergence of the server model. This is achieved by making the server broadcast a global model with a lookahead gradient. This strategy enables the proposed approach to convey the projected global update information to participants effectively without additional client memory and extra communication costs. We also regularize local updates by aligning each client with the overshot global model to reduce bias and improve the stability of our algorithm. We provide the theoretical convergence rate of our algorithm and demonstrate remarkable performance gains in terms of accuracy and communication efficiency compared to the state-of-the-art methods, especially with low client participation rates. The source code is available at our project page.

Submitted: Jan 10, 2022