Paper ID: 2201.03893
Heuristic Search for Rank Aggregation with Application to Label Ranking
Yangming Zhou, Jin-Kao Hao, Zhen Li, Fred Glover
Rank aggregation aims to combine the preference rankings of a number of alternatives from different voters into a single consensus ranking. As a useful model for a variety of practical applications, however, it is a computationally challenging problem. In this paper, we propose an effective hybrid evolutionary ranking algorithm to solve the rank aggregation problem with both complete and partial rankings. The algorithm features a semantic crossover based on concordant pairs and a late acceptance local search reinforced by an efficient incremental evaluation technique. Experiments are conducted to assess the algorithm, indicating a highly competitive performance on benchmark instances compared with state-of-the-art algorithms. To demonstrate its practical usefulness, the algorithm is applied to label ranking, which is an important machine learning task.
Submitted: Jan 11, 2022