Paper ID: 2201.04093
Systematic Literature Review: Quantum Machine Learning and its applications
David Peral García, Juan Cruz-Benito, Francisco José García-Peñalvo
Quantum computing is the process of performing calculations using quantum mechanics. This field studies the quantum behavior of certain subatomic particles for subsequent use in performing calculations, as well as for large-scale information processing. These capabilities can give quantum computers an advantage in terms of computational time and cost over classical computers. Nowadays, there are scientific challenges that are impossible to perform by classical computation due to computational complexity or the time the calculation would take, and quantum computation is one of the possible answers. However, current quantum devices have not yet the necessary qubits and are not fault-tolerant enough to achieve these goals. Nonetheless, there are other fields like machine learning or chemistry where quantum computation could be useful with current quantum devices. This manuscript aims to present a Systematic Literature Review of the papers published between 2017 and 2023 to identify, analyze and classify the different algorithms used in quantum machine learning and their applications. Consequently, this study identified 94 articles that used quantum machine learning techniques and algorithms. The main types of found algorithms are quantum implementations of classical machine learning algorithms, such as support vector machines or the k-nearest neighbor model, and classical deep learning algorithms, like quantum neural networks. Many articles try to solve problems currently answered by classical machine learning but using quantum devices and algorithms. Even though results are promising, quantum machine learning is far from achieving its full potential. An improvement in the quantum hardware is required since the existing quantum computers lack enough quality, speed, and scale to allow quantum computing to achieve its full potential.
Submitted: Jan 11, 2022