Paper ID: 2201.05236
A Method for Controlling Extrapolation when Visualizing and Optimizing the Prediction Profiles of Statistical and Machine Learning Models
Jeremy Ash, Laura Lancaster, Chris Gotwalt
We present a novel method for controlling extrapolation in the prediction profiler in the JMP software. The prediction profiler is a graphical tool for exploring high dimensional prediction surfaces for statistical and machine learning models. The profiler contains interactive cross-sectional views, or profile traces, of the prediction surface of a model. Our method helps users avoid exploring predictions that should be considered extrapolation. It also performs optimization over a constrained factor region that avoids extrapolation using a genetic algorithm. In simulations and real world examples, we demonstrate how optimal factor settings without constraint in the profiler are frequently extrapolated, and how extrapolation control helps avoid these solutions with invalid factor settings that may not be useful to the user.
Submitted: Jan 13, 2022