Paper ID: 2201.08731

Low-Interception Waveform: To Prevent the Recognition of Spectrum Waveform Modulation via Adversarial Examples

Haidong Xie, Jia Tan, Xiaoying Zhang, Nan Ji, Haihua Liao, Zuguo Yu, Xueshuang Xiang, Naijin Liu

Deep learning is applied to many complex tasks in the field of wireless communication, such as modulation recognition of spectrum waveforms, because of its convenience and efficiency. This leads to the problem of a malicious third party using a deep learning model to easily recognize the modulation format of the transmitted waveform. Some existing works address this problem directly using the concept of adversarial examples in the image domain without fully considering the characteristics of the waveform transmission in the physical world. Therefore, we propose a low-intercept waveform~(LIW) generation method that can reduce the probability of the modulation being recognized by a third party without affecting the reliable communication of the friendly party. Our LIW exhibits significant low-interception performance even in the physical hardware experiment, decreasing the accuracy of the state of the art model to approximately $15\%$ with small perturbations.

Submitted: Jan 20, 2022