Paper ID: 2201.09822
Spectral-PQ: A Novel Spectral Sensitivity-Orientated Perceptual Compression Technique for RGB 4:4:4 Video Data
Lee Prangnell, Victor Sanchez
There exists an intrinsic relationship between the spectral sensitivity of the Human Visual System (HVS) and colour perception; these intertwined phenomena are often overlooked in perceptual compression research. In general, most previously proposed visually lossless compression techniques exploit luminance (luma) masking including luma spatiotemporal masking, luma contrast masking and luma texture/edge masking. The perceptual relevance of color in a picture is often overlooked, which constitutes a gap in the literature. With regard to the spectral sensitivity phenomenon of the HVS, the color channels of raw RGB 4:4:4 data contain significant color-based psychovisual redundancies. These perceptual redundancies can be quantized via color channel-level perceptual quantization. In this paper, we propose a novel spatiotemporal visually lossless coding method named Spectral Perceptual Quantization (Spectral-PQ). With application for RGB 4:4:4 video data, Spectral-PQ exploits HVS spectral sensitivity-related color masking in addition to spatial masking and temporal masking; the proposed method operates at the Coding Block (CB) level and the Prediction Unit (PU) level in the HEVC standard. Spectral-PQ perceptually adjusts the Quantization Step Size (QStep) at the CB level if high variance spatial data in G, B and R CBs is detected and also if high motion vector magnitudes in PUs are detected. Compared with anchor 1 (HEVC HM 16.17 RExt), Spectral-PQ considerably reduces bitrates with a maximum reduction of approximately 81%. The Mean Opinion Score (MOS) in the subjective evaluations show that Spectral-PQ successfully achieves perceptually lossless quality.
Submitted: Jan 24, 2022