Paper ID: 2201.10252
DocEnTr: An End-to-End Document Image Enhancement Transformer
Mohamed Ali Souibgui, Sanket Biswas, Sana Khamekhem Jemni, Yousri Kessentini, Alicia Fornés, Josep Lladós, Umapada Pal
Document images can be affected by many degradation scenarios, which cause recognition and processing difficulties. In this age of digitization, it is important to denoise them for proper usage. To address this challenge, we present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images, in an end-to-end fashion. The encoder operates directly on the pixel patches with their positional information without the use of any convolutional layers, while the decoder reconstructs a clean image from the encoded patches. Conducted experiments show a superiority of the proposed model compared to the state-of the-art methods on several DIBCO benchmarks. Code and models will be publicly available at: \url{https://github.com/dali92002/DocEnTR}.
Submitted: Jan 25, 2022