Paper ID: 2201.10838

Privacy-Preserving Logistic Regression Training with A Faster Gradient Variant

John Chiang

Logistic regression training over encrypted data has been an attractive idea to security concerns for years. In this paper, we propose a faster gradient variant called $\texttt{quadratic gradient}$ for privacy-preserving logistic regression training. The core of $\texttt{quadratic gradient}$ can be seen as an extension of the simplified fixed Hessian. We enhance Nesterov's accelerated gradient (NAG) and Adaptive Gradient Algorithm (Adagrad) respectively with $\texttt{quadratic gradient}$ and evaluate the enhanced algorithms on several datasets. %gradient $ascent$ methods with this gradient variant on the gene dataset provided by the 2017 iDASH competition and other datasets. Experiments show that the enhanced methods have a state-of-the-art performance in convergence speed compared to the raw first-order gradient methods. We then adopt the enhanced NAG method to implement homomorphic logistic regression training, obtaining a comparable result by only $3$ iterations. There is a promising chance that $\texttt{quadratic gradient}$ could be used to enhance other first-order gradient methods for general numerical optimization problems.

Submitted: Jan 26, 2022