Paper ID: 2201.11400

The MSXF TTS System for ICASSP 2022 ADD Challenge

Chunyong Yang, Pengfei Liu, Yanli Chen, Hongbin Wang, Min Liu

This paper presents our MSXF TTS system for Task 3.1 of the Audio Deep Synthesis Detection (ADD) Challenge 2022. We use an end to end text to speech system, and add a constraint loss to the system when training stage. The end to end TTS system is VITS, and the pre-training self-supervised model is wav2vec 2.0. And we also explore the influence of the speech speed and volume in spoofing. The faster speech means the less the silence part in audio, the easier to fool the detector. We also find the smaller the volume, the better spoofing ability, though we normalize volume for submission. Our team is identified as C2, and we got the fourth place in the challenge.

Submitted: Jan 27, 2022

Topics