Paper ID: 2201.12283
Predicting The Stock Trend Using News Sentiment Analysis and Technical Indicators in Spark
Taylan Kabbani, Fatih Enes Usta
Predicting the stock market trend has always been challenging since its movement is affected by many factors. Here, we approach the future trend prediction problem as a machine learning classification problem by creating tomorrow_trend feature as our label to be predicted. Different features are given to help the machine learning model predict the label of a given day; whether it is an uptrend or downtrend, those features are technical indicators generated from the stock's price history. In addition, as financial news plays a vital role in changing the investor's behavior, the overall sentiment score on a given day is created from all news released on that day and added to the model as another feature. Three different machine learning models are tested in Spark (big-data computing platform), Logistic Regression, Random Forest, and Gradient Boosting Machine. Random Forest was the best performing model with a 63.58% test accuracy.
Submitted: Jan 19, 2022