Paper ID: 2201.12482
Collaborative Learning in General Graphs with Limited Memorization: Complexity, Learnability, and Reliability
Feng Li, Xuyang Yuan, Lina Wang, Huan Yang, Dongxiao Yu, Weifeng Lv, Xiuzhen Cheng
We consider a K-armed bandit problem in general graphs where agents are arbitrarily connected and each of them has limited memorizing capabilities and communication bandwidth. The goal is to let each of the agents eventually learn the best arm. It is assumed in these studies that the communication graph should be complete or well-structured, whereas such an assumption is not always valid in practice. Furthermore, limited memorization and communication bandwidth also restrict the collaborations of the agents, since the agents memorize and communicate very few experiences. Additionally, an agent may be corrupted to share falsified experiences to its peers, while the resource limit in terms of memorization and communication may considerably restrict the reliability of the learning process. To address the above issues, we propose a three-staged collaborative learning algorithm. In each step, the agents share their latest experiences with each other through light-weight random walks in a general communication graph, and then make decisions on which arms to pull according to the recommendations received from their peers. The agents finally update their adoptions (i.e., preferences to the arms) based on the reward obtained by pulling the arms. Our theoretical analysis shows that, when there are a sufficient number of agents participating in the collaborative learning process, all the agents eventually learn the best arm with high probability, even with limited memorizing capabilities and light-weight communications. We also reveal in our theoretical analysis the upper bound on the number of corrupted agents our algorithm can tolerate. The efficacy of our proposed three-staged collaborative learning algorithm is finally verified by extensive experiments on both synthetic and real datasets.
Submitted: Jan 29, 2022