Paper ID: 2202.00087
Holistic Fine-grained GGS Characterization: From Detection to Unbalanced Classification
Yuzhe Lu, Haichun Yang, Zuhayr Asad, Zheyu Zhu, Tianyuan Yao, Jiachen Xu, Agnes B. Fogo, Yuankai Huo
Recent studies have demonstrated the diagnostic and prognostic values of global glomerulosclerosis (GGS) in IgA nephropathy, aging, and end-stage renal disease. However, the fine-grained quantitative analysis of multiple GGS subtypes (e.g., obsolescent, solidified, and disappearing glomerulosclerosis) is typically a resource extensive manual process. Very few automatic methods, if any, have been developed to bridge this gap for such analytics. In this paper, we present a holistic pipeline to quantify GGS (with both detection and classification) from a whole slide image in a fully automatic manner. In addition, we conduct the fine-grained classification for the sub-types of GGS. Our study releases the open-source quantitative analytical tool for fine-grained GGS characterization while tackling the technical challenges in unbalanced classification and integrating detection and classification.
Submitted: Jan 31, 2022