Paper ID: 2202.03647

Summary On The ICASSP 2022 Multi-Channel Multi-Party Meeting Transcription Grand Challenge

Fan Yu, Shiliang Zhang, Pengcheng Guo, Yihui Fu, Zhihao Du, Siqi Zheng, Weilong Huang, Lei Xie, Zheng-Hua Tan, DeLiang Wang, Yanmin Qian, Kong Aik Lee, Zhijie Yan, Bin Ma, Xin Xu, Hui Bu

The ICASSP 2022 Multi-channel Multi-party Meeting Transcription Grand Challenge (M2MeT) focuses on one of the most valuable and the most challenging scenarios of speech technologies. The M2MeT challenge has particularly set up two tracks, speaker diarization (track 1) and multi-speaker automatic speech recognition (ASR) (track 2). Along with the challenge, we released 120 hours of real-recorded Mandarin meeting speech data with manual annotation, including far-field data collected by 8-channel microphone array as well as near-field data collected by each participants' headset microphone. We briefly describe the released dataset, track setups, baselines and summarize the challenge results and major techniques used in the submissions.

Submitted: Feb 8, 2022